

Novel Methods of Hydrogen Production Using C1 Chemistry

Gerald Huffman¹, Naresh Shah¹, Mohindar Seehra², Irving Wender³, Jack Tierney³, Ram Gupta⁴, Edward Eyring⁵, and Richard Ernst⁵

Consortium for Fossil Fuel Science: ¹University of Kentucky, ²West Virginia University, ³University of Pittsburgh, ⁴Auburn University, ⁵University of Utah

DoE Contract No. DE-FC26-O2NT41594 April 13, 2007

Contact: huffman@engr.uky.edu, (859) 257-4027

http://www.cffs.uky.edu

Project ID # PDP22

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: Oct. 1, 2005
- End: Sept. 30, 2008
- 28 % complete

Budget

- Total project funding
 - DOE \$4,500,000
 - CFFS \$1,125,000
- Funding received in FY06 -\$1,000,000

Barriers

- Produce hydrogen from coal with minimum CO₂ production.
- Hydrogen storage/carrier media.

Partners

CFFS: Univ. of Kentucky, West Virginia Univ., Univ. of Pittsburgh, Univ. of Utah, Auburn Univ.

Advisory Board: Eastman, ConocoPhillips, Chevron Texaco, US Air Force, US Army

Objectives and Approach

 Develop novel technology for producing hydrogen from coal, natural gas and biomass using C1 chemistry.

 Develop better methods of producing hydrogen-rich liquids and gases from coal, natural gas, and biomass using C1 chemistry. The Consortium for Fossil Fuel Science (CFFS) is a research center with participants from five universities - Kentucky, West Virginia, Pittsburgh, Auburn, and Utah. This poster briefly describes the following novel methods of hydrogen production developed in this consortium.

- Catalytic dehydrogenation of alkanes Gerald Huffman and Naresh Shah, CFFS and Dept. of Chem. & Materials Engr., University of Kentucky
- 2. Carbon-assisted electrolysis of water Mohindar Seehra, Dept. of Physics, West Virginia University
- 3. Hydrogen by Supercritical Reforming of Water Ram Gupta, Dept. of Chem. Engr., Auburn University
- 4. Hydrogen from Polyols Irving Wender and Jack Tierney, Dept. of Chemical Engineering, University of Pittsburgh
- 5. High activity WGS catalysts produced by gas phase incorporation of Pd on very high surface area ceria Edward Eyring and Richard Ernst, Dept. of Chemistry, University of Utah

Top – TEM image and size distribution of as-synthesized 10 nm Fe-Ni nanoparticles. Bottom – TEM and STEM images of the same nanoparticles on Mg(Al)O support.

Time-on-stream (TOS) H₂ production by methane dehydrogenation over Mg(AI)O supported: (Left) 0.2 wt% Fe-Ni (12 nm) nanoparticles; (Right) 5 wt% FeNi prepared by incipient wetness (IW) method.

HRTEM images of carbon nanotubes (MWNT) produced during ethane dehydrogenation at 600°C over Fe-Ni nanoparticles (10 nm, 0.2 wt%) supported on Mg(Al)O after removal of support in dilute nitric acid solution at room temperature. Some Fe-Ni nanoparticles remain within the MWNT tips.

TEM images of 12 nm and 4 nm Fe oxide particles prepared for use in lower alkanes dehydrogenation experiments. (*Hyeon et al, Nature Materials, 3, 2004, 891; Sun et al, J. Am. Chem. Soc, 126, 2004, 273*).

Effect of nanoparticles size on time-on stream (TOS) hydrogen production by catalytic dehydrogenation of methane over Fe/Mg(AI)O.

Hydrogen production by catalytic dehydrogenation

- Catalytic dehydrogenation of alkanes produces pure hydrogen and carbon nanotubes in one step. No carbon oxides are produced. Binary Fe-M on various supports exhibit excellent activity and productivity.
- Multiwalled nanotubes are produced at T > 600°C and stacked cone nanotubes at T ≤ approximately 500°C
- A new Mg(AI)O support has been produced from Mg-AI hydrotalcite precursor. It has high surface area and is easily dissolved in nitric acid, which greatly simplifies nanotube cleaning.
- Fe-Ni nanoparticles of uniform size (10 nm) have been synthesized and dispersed on Mg(AI)O. These catalysts exhibit better activity for hydrogen production than Fe-Ni/Mg(AI)O prepared by incipient wetness technique.
- 4 nm and 12 nm Fe nanoparticles on Mg(AI)O exhibit reasonably good activity for dehydrogenation but not as good as Fe-Ni nanoparticles.

Carbon-assisted electrochemical production of hydrogen at room temperature

Coughlin et al (J.Appl.Electrochem.10,729,1980) proposed the electrochemical gasification of carbons :

Anode: $C(s) + 2H_2O(l) \rightarrow CO_2(g) + 4H^+ + 4e^-$

Cathode: $4H^+ + 4e^- \rightarrow 2H_2(g)$

Net reaction : $C(s) + 2H_2O(l) \rightarrow CO_2(g) + 2H_2(g)$

$$\Delta G = \Delta G (product) - \Delta G (reactants)$$

= -94.26 (CO₂) + 2(56.7) = 19.27 kcal/ 2mol H₂O = 9.6 kcal/mol H₂O, compared to 56.7 kcal/mol H₂O without carbon

$$E^0 = -\frac{\Delta G}{nF} = -0.21V$$
 compared to $E^0 = -1.23V$ for electrolysis of water without carbon.

^{*} For details, see Seehra et al, Appl. Phys. Lett. 90, 044104 (2007).

Carbon-assisted electrochemical hydrogen production

Working electrode area: 6.8 cm²; Counter electrode area: 2.55 cm²

Carbon-assisted electrochemical hydrogen production

t_H = time needed to produce the same amount of H₂

H₂ is produced at voltages as low as 0.1V, but time required to produce the same amount of H₂ is higher and the corresponding current is lower.

Energy requirements for carbon-assisted electrochemical hydrogen production

- Power = I E₀ (Joules /sec or watt)
- Energy needed = $\int P dt = I E_0 t$
- 1 kiloWatt-hour = 10^3 Joules/sec x 3600 sec = 3.6 x 10^6 Joules

E ₀ (volts)	I ₀ (mA)	Power=E ₀ I ₀ (10 ⁻⁴ watts)	t _H (min/H ₂)	E ₀ . I ₀ . t _H (10 ⁻⁴ watt- hr/H ₂)	A _H (10 ² H ₂ /watt-hr)
0.1 (Carbon)	0.4	0.4	95.9	0.64	156.3
0.28(Carbon)	4.4	12.32	18.5	3.8	26.3
0.51(Carbon)	6.38	32.54	8.3	4.5	22.2
1.78(Carbon)	200	3560	0.37	22.0	4.54
1.67 (No Carbon)	65	1085.5	3.16	57.2	1.75

Energy consumption to produce same amount of H₂ goes up sharply as V increases. But the time requirements go down with increasing V.

Carbon-assisted electrochemical hydrogen production

Carbon-assisted H_2 production at lower voltages is considerably more energy efficient, although it takes somewhat longer to produce the same amount of H_2 . Use of catalysts to reduce this time is being investigated.

Hydrogen Production by Reforming in Supercritical Water

- H₂O is both a reactant and the solvent
- Direct high-pressure H₂ is obtained
- Compact reactors: reactions time in seconds
- In-situ separation
- Energy integration
- Carbon dioxide can be easily sequestered
- Avoids char formation

Supercritical water is like an organic solvent!

[Kritzer and Dinjus, Chemical Engineering Journal (2001), 83(3), 207-214]

Experimental Setup - H₂ Production by Reforming in Supercritical Water

Hydrogen Production by Reforming in Supercritical Water

 H_2 from 10 wt.% methanol using Monel-400 ($Ni_{0.67}$ $Cu_{0.33}$) Reactor - 600 °C, feed rate = 1 ml/min, reactor length = 1 m

[Gadhe, Jayant B.; Gupta, Ram B., Industrial & Engineering Chemistry Research (2005) 44, 4577-4585]

Hydrogen Production by Reforming in Supercritical Water

$$C_6H_5CH_3 + 14H_2O \Leftrightarrow 7CO_2 + 18H_2$$

Inconel reactor, Ru/Al₂O₃ catalyst, 800°C, 3500 psi, 2.1 wt% toluene in water feed

Hydrogen from Polyols

- Polyols are alcohols which contain two or more adjacent hydroxyl groups connected to carbons. They can be obtained from natural materials such as sugars, fats or cellulose.
- They can be reacted with water in a single step reactor at 200-250°C and sufficient pressure to prevent vaporization of the water to produce a high yield of hydrogen and low CO.
- Hydrogen yield and selectivity for a series of polyols ranging from C₂ to C₆ have been measured using a flow reactor and a variety of experimental conditions.

Hydrogen Production from Biosustainable Polyols

Hydrogen Production from Selected Polyols

Reactant	Feed Conc. (wt%)	H ₂ Yield (mole %)	H ₂ Selectivity %
Ethylene glycol	1	67.7	82
	10	62.1	80
Glycerol	1	63.8	70
	10	61.7	68
Sorbitol	1	59.8	58
Sucrose	1	52.0	50
Glucose	1	47.2	33
Corn syrup (97% D-glucose)	1	46.8	31

Reaction Conditions: 220°C, 350 psi, 1 % $PtAl_2O_3$; CO < 400 ppm Hydrogen yield based on total hydrogen in polyol

Hydrogen from Polyols - Catalyst Specificity

Experiments with glycerol, a by-product of biodiesel manufacture, have shown that it can be converted to hydrogen by splitting the O-H bond using a Pt catalyst or to chemicals by splitting the C-C bond using a Cu catalyst.

High activity WGS catalysts produced by gas phase incorporation (GPI) of Pd on very high surface area ceria

- Use of volatile, organometallic Pd source yields very small and well-dispersed Pd particles
- Comparison of GPI Pd with conventionally (solution) based) applied Pd exemplifies significant advantages of GPI for Water-Gas Shift (WGS) reaction

		,		
	Pd	Incorporation	Activity @ 200 °C	Improvement @
	(%)	Method	(mmol-H ₂ /g-cat h)	200 °C w/ GPI
	1	solution	4.2	
 Pd	1	gas-phase	7.2	71%
	2	solution	4.3	
	2	gas-phase	11.0	155%
	5	solution	11.6	
$Pd(\eta^3-C_3H_5)(\eta^5-C_5H_5)$	5	gas-phase	18.7	61%

Production of very high surface area (S_A) Ceria aerogel

- Very high surface ceria
 - Maximum BET $S_A = 375 \text{ m}^2/\text{g}$
 - Synthesized by sol-gel chemistry
- Can be readily doped with precious metals for active WGS catalysts by multiple methods
 - GPI of volatile organometallic
 - Solvent incorporation with suspended, preformed nanoparticles

WGS activity of high S_A ceria aerogel

Catalyst type	Arrhenius Activation Energy	
Pd/ceria (calcined)	(53.7±0.8) kJ/mol	
Pd/ceria	(52.7±0.8) kJ/mol	
ceria	(77.2±1.5) kJ/mol	
ceria (calcined)	(74.3±2.0) kJ/mol	

- Pd/ceria BET $S_A = 283 \text{ m}^2/\text{g}$
- Pd/ceria (calcined) BET S_A = 137 m²/g
- Pd incorporated via GPI

Silica aerogel-supported ceria

- XRD data indicates relatively constant ceria crystallite size of 7 nm – with no observed sintering or agglomeration under practical conditions:
 - Independent of ceria loadings
 - Independent of calcination temperatures, up to at least 650 °C
 - After extreme reaction conditions, more harsh than intended application, (WGS at 350 °C)
- U.S. Patent Application (in progress)